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Abstract. One of the simplest elementary reactions, that between H2 and OH,
is of great theoretical interest in chemical kinetics. Surprisingly it turned out
recently to be of importance in medical and biological environments, in search
of role of hydrogen as radical scavenger participating in the human body: water
is supposed to be of possible influence in this reaction. However, there are no
theoretical studies considering solvent effects in the title reaction which in the
gas phase is slow. Here, we aim to analyze the H2 + OH reaction with a blend of
electronic structure calculations and the deformed Transition-State Theory
(d-TST) approach. Inclusion of the continuum solvation model density
(SMD) was applied for mimicking the role of the aqueous phase. Preliminary
results demonstrate an enormous increase in the reactivity between H2 and OH
molecules in water environment, approximately 150- and 138-fold at 25 °C and
36.5 °C, respectively. We expect that these results can help to shed new light on
the understanding of the H2 + OH reaction in aqueous phase, paving the way to
research for medical and technological applications.

1 Introduction

The reaction between H2 and OH molecules is being demonstrated to be of great
importance in biological and medical [1] environments, in spite of the simplicity of the
molecules participating in the process. The H2 molecule is the smallest gas molecule
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composed of two protons and two electrons, forming a very stable compound that
reacts with the oxide radical ion (O−) [2]. There are several documentations regarding
the antioxidant performance of the H2 molecule. Studies of selectivity of H2 molecule
in cells inducing oxidative stress and reducing cytotoxicity reactive of oxygenated
species, i.e., hydroxyl radical [2–4]. Due to the applicability on the human body, water
is supposed to be of great influence in this reaction, however, there are scarce studies
from a theoretical viewpoint [5].

The four-body reaction investigation has been propitiated a deep understanding of
the mechanism and reactivity of chemical reactions in the gas phase [6–9]. Recently,
the prototypical H2 + OH reaction has been highlighted due to the publication of a
paper by Ohsawa et al. [4], which presented results with a significant reduction of
cerebral infarction in rats when exposed to of 2% to 4% v/v of molecular hydrogen
mixtures. Later works [2, 3, 5, 10–16] obtained promising results in the treatment of 63
types of diseases with the administration of H2 in several medical areas. The efficacy of
the hydrogen molecule was suggested due to neutralization of OH radical [17], in a few
cases prejudicial to a living organism, which H2 has reactive specificity [4]. Con-
comitantly, this reaction came out to be important in other applications, such as the
control of free radicals in the atmosphere [18], gas- and condensed phase reactions [19–
21] and photosensitive materials [22]. On another context, the H2 + OH reaction has
been mainly exploited to redirect H2 gases from nuclear power plants to be reformed.
Molecular hydrogen (H2) has been playing a key role in nuclear power plants since
water is used in the refrigeration of reactors with consequent high concentration H2 and
hydrogen peroxide (H2O2) formation due water radiolysis – interaction with alpha, beta
and gamma radiation [23–25]. The high concentration of these generated gases is a
concern to avoid explosive conditions since the water radiolysis under extreme con-
ditions is not fully understood due to the rich and inherent complexity of chemical
activity [26].

There is extensive experimental and theoretical rate constant investigation of the
title reaction [5] and, due to its importance, many potential energy surfaces (PES) have
been proposed to estimate theoretically thermodynamic and kinetic parameters. Chen
et al. [27] proposed recently a global PES using neural networks method based on
approximately 17,000 ab initio energies calculated via UCCSD(T)-F12a/AVTZ.
Additionally, quantum-classical (QC) investigations reported the connection of the
reactivity of H2 with vibrational excitation energy exchange while OH radicals are not
affected [28]. Recently, Kastner et al. [20] obtained theoretical reaction rate constant, in
the range of the 150 K to 1000 K, with excellent agreement with experimental data.
Talukdar et al. [29] and Bhattacharya et al. [6] demonstrated the presence of an isotopic
effect in the reaction involving molecular hydrogen - especially in low-temperature
conditions – a classical signature of quantum tunneling effect [6, 29].

Here, the H2 + OH reaction in the gas-phase and in the aqueous environments (due
relevance in living organism previously described) has been investigated with a blend
of electronic structure calculations - Quadratic Configuration Interaction involving
single, double and triple substitutions excitations QCISD(T), with the deformed
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Transition-State Theory (d-TST) to account for the tunneling effect. A similar approach
was previously developed and illustrated by our group in various cases of four-body
reactions, with promising results suggesting a significant role of stereodynamics,
roaming and quantum effects in influencing the rates of reactive [18, 20, 30–32], so
qualifying our theoretical tools to cope with this reaction.

2 Computational Procedures

2.1 Stationary Electronic Structure Calculations

The electronic structure properties of the reactants, the products, and the transition state
were calculated employing the Møller-Plesset [33], Configuration Interaction [34], in
combination with 6-311++G(3df,3pd) and aug-cc-pVDZ basis set. The specific level of
calculation was selected to perform analyses and comparison with experimental data:
CISD(T)/aug-cc-pVDZ//MP2/6-311+G(3df,2pd). The stationary points were charac-
terized by analytic harmonic frequency calculations. The absence or existence of one
imaginary frequency for crossing the barrier characterizes the optimized structures as
local minimum or transition state, respectively. The zero-point vibrational energy
contributions were considered in the calculation of the barrier. To account for the
solvent effect the continuum solvation model density was applied to mimicking the
water ambiance (SMD) [35].

2.2 Reaction Rate Theories

The reaction rate constants (k) were calculated by deformed-transition state theory
(d-TST). This phenomenological formulation covers cases of concave deviation from
Arrhenius law against the reciprocal of temperatures for elementary chemical reactions,
exhibiting sub-Arrhenius behavior. In general, this behavior is a signature of quantum
tunneling. To account the quantum tunneling in chemical reactions in the deformed
formulation, d parameter is introduced from transitivity concept c [36, 37] namely the
inverse of activation energy (1=Ea) with reciprocal of the temperature (b) truncated at
an order higher than one:

c � 1
Ea

¼ 1

ez
� db ð1Þ

where ez is a constant and represents an energetic obstacle to the reaction at high
temperatures and b ¼ 1=kBT , where kB is Boltzmann’s constant and T is the absolute
temperature. In Ref. [38], an explicit procedure for calculation of d was developed as

inversely proportional to the square of the barrier (ez) and directly proportional to the
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square of the frequency for crossing the barrier (mz) at maximum in the minimum
energy path on the potential energy surface,

d ¼ � 1
3

hmz
2ez

 !2

ð2Þ

where h is Planck’s constant.
The tunneling corrected averaged by Boltzmann factor from TST formulation was

replaced by the deformed exponential function, yielding the d-TST formulation [39]

k bð Þ ¼ 1
hb

Qz
QReac

1� dezb
� �1=d

ð3Þ

where QReac and Qz are the partition function (translational, vibrational, rotational and
electronic contributions) of the reactants and of the activated complex, respectively.
Equation (4) recovers the TST rate constant when d tends to zero, due to the Euler

limit, lim
d!0

1� dezb
� �1=d

¼ e�ezb.
The tunneling regime can be characterized considering the crossover temperature

parameter Tc ¼ hmz=2pkB[40, 41], conventionally establishing (within some arbitrari-
ness) the ranges of the regimes for a specific imaginary frequency at the top of the

barrier point, mz: negligible (4Tc [ T [ 2Tc), moderate (2Tc [ T [ Tc) and deep
(Tc [ T) regimes.

A phenomenological representation for the temperature dependence of obtained
rate constants to cover the regimes, except at deep tunneling, can be obtained by
Aquilanti-Mundim deformed Arrhenius formula (AM) [42]

k bð Þ ¼ A 1� �dE0bð Þ1=�d ð4Þ

A and �d are the pre-exponential factor and the deformed parameter, respectively. [Note a
change in the notation here, needed in order to avoid ambiguities: in terms of the fitted

equation, we defined �d which is different from d and E0 which is different from ez.
All kinetic and associated parameters were calculated with the Transitivity Code-

version 1.0.0: details of the computational program can be found on the www.
vhcsgroup.com/transitivity web page.

3 Results and Discussion

Table 1 shows theoretical imaginary vibrational frequency (cm−1), crossover temper-
ature and relative energies (in kcal mol�1) of the stationary points along the
H2 þOH ! H2OþH reaction coordinate at carefully chosen different levels of
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theory. The transition state in gas-phase presents an imaginary vibrational frequency of
1531i at MP2/6-311++G(3df,3pd), clearly different from the result obtained by Meisner
and Kastner (1199i) at CCSD(T)-F12/cc-pVDZ-F12. Consequently, a difference
around 100 K is observed for crossover temperature. This difference suggests an
improvement in our calculation, which was performed only in energy at CISD(T)/aug-
cc-pVDZ//MP2/6-311+G(3df,2pd) level.

Table 1 also present barrier height calculated at MP2 level of theory in gas-phase,
around 8 kcal:mol�1, different from Meisner and Kastner obtained with coupled cluster
level of calculation. However, our calculation yields a significant decrease in barrier
energy and in exothermicity values at CISD(T)/aug-cc-pVDZ//MP2/6-311+G(3df,2pd)
level with a reasonable agreement with Meisner and Kastner [20]. To account for the
solvent effect, the continuum solvation model density was applied for mimicking the
aqueous-phase (SMD) at CISD(T)/aug-cc-pVDZ//MP2/6-311+G(3df,2pd) level of
calculation. Comparison between gas- and aqueous-phase presents a slight decrease in
the barrier height at the similar level of calculation.

We calculate the kinetic rate constant using deformed-Transition State Theory (d-
TST) in a realistic range of temperature (250–350 K) at CISD(T)/aug-cc-pVDZ//
MP2/6-311+G(3df,2pd) level of calculation for the title reaction in gas- and aqueous-
phase. Figure 1 shows the comparison of the d-TST rate constant with previous the-
oretical [20, 43] and experimental [29, 30, 44–47] results for H2 þOH ! þH2OþH
reaction: it is observed a slight difference with the literature in reaction rate constants in
gas-phase, and an improvement in the reactivity with the inclusion of solvent effect.
Here, we show experimental data of the reaction rate constants in aqueous-phase [48–
50], and our preliminary calculations yield a reasonable qualitative agreement.

In this work, we use the AM formula, Eq. (4), to fit the temperature dependence of
the reaction rate constants in gas- and aqueous-phase. AM formula has been suc-
cessfully applied to a variety of chemical processes [42, 51–56]. The temperature
dependence of the reaction rate constants can be expressed as

kGas Tð Þ ¼ 2:94� 10�10 1þ 459:40
T

� ��12:32

; ð5Þ

Table 1. Imaginary vibrational frequencies ðmzÞ in cm−1, cross over temperature ðTcÞ in Kelvin,

the barrier height ez
� �

and exothermicity-type energies in kcal:mol�1 for OH + H2 reaction both

gas- and aqueous-phase. Theoretical data are also presented for comparison.

mz Tc ez DE

Gas-phase [MP2] 1531i 350 8.05 −22.97
Gas-phase [CISD(T)//MP2] – 6.63 −14.30
Aqueous-phase [CISD(T)//MP2] – 6.27 −16.71
Meisner and Kastner (Gas phase) [20] 1199i 270 5.38 −16.27
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and

kAqueous Tð Þ ¼ 1:64� 10�9 1þ 479:95
T

� ��8:55

: ð6Þ

The water environment produced a significant effect in the reactivity of the
molecular hydrogen with hydroxyl radical as observed in Fig. 1. The reaction rate
constants in aqueous-phase increase approximately 150- and 138-fold at 25 °C and
36.5 °C, respectively, see Eq. (7). The former temperature is conventionally used as
the referential temperature in chemical reactions and the last mimics the human cor-
poral temperature.

kAqueous 25 �Cð Þ
kGas 25 �Cð Þ � 150;

kAqueous 36:5 �Cð Þ
kGas 36:5 �Cð Þ � 138 ð7Þ

4 Conclusion

In summary, in this work we established the role of the aqueous environment for the
OH + H2 reaction based on high-level deformed Transition-State Theory. The fol-
lowing key findings emerged from our investigation and support the assumptions
presented in this work:

Fig. 1. Comparison of the d-TST rate constant with previous theoretical [20, 43] and
experimental [29, 30, 44–47] results for H2 þOH ! þH2OþH reaction.
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• All the stationary points with the energetics and geometric parameters involved in
the reaction were accurately characterized at the CISD(T)/aug-cc-pVDZ//MP2/6-
311+G(3df,2pd) level of calculation.

• Deformed Transition-State Theory is shown to be suitable for describing the
reaction rate constants in gas- and aqueous-phases.

• Water ambiance produced a significant effect in the reactivity of the molecular
hydrogen with hydroxyl radical, approximately 150- and 138-fold at 25 °C and
36.5 °C, respectively.

We expect that these results will pave the way to future studies for medical and
technological applications.
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